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Abstract 

 This research was completed in tandem as a project funded through MoDOT and the 

Mid-America Transportation Center. It used deep learning methods, along with geospatial data 

from the USGS National Map and other public geospatial data sources, to develop forecasting 

tools capable of assessing water level rate of change in high risk flood areas. These tools build on 

existing models developed by the USGS, FEMA, and others and were used to determine 

evacuation routing and detours to mitigate the potential for loss of life during flash floods. The 

project scope included analysis of publicly available flood data along the Meramec River basin 

in Fenton as part of a pilot project in Missouri. These data were then used to determine the rate 

of rise in order to model evacuation or detour planning modules that can be implemented to 

assure the safety of the community and highway personnel, as well as the safe and secure 

transport of goods along public roadways. These modules were linked to existing real-time 

rainfall gauges and weather forecasts for improved accuracy and usability. The transportation 

safety or disaster planner can use these results to produce planning documents based on 

geospatial data and information to develop region-specific tools and methods. 
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Executive Summary 

This research uses deep learning methods, geospatial data from the USGS National Map, 

and other public geospatial data sources to create a methodology capable of assessing water level 

rate of change in high risk flood areas. This methodology is used as part of a framework that can 

determine routing decisions based on safety constraints. These tools build on existing models 

developed by the USGS, FEMA, and others. The project scope includes analysis of publicly 

available flood data along the Meramec River basin in Fenton (intersection of I-44 and Route 

141) as part of a pilot project in Missouri. The data was integrated to provide an indication of 

roads affected by flooding and suggest rerouting schemes (fig. E.1) along with the indirect costs 

that would be incurred. This framework introduces a methodology to integrate flood data with 

transportation data that has not existed prior to this research. This provides combined 

information on water rise, including when a road will be overtopped. Prior tools only updated 

flood inundation information at six hour intervals using data provided by NOAA.  

While useful for response planning for a widespread flooding events, this is of limited 

use in traffic rerouting. As this inundation data was not designed with transportation systems in 

mind, there is no existing methodology available to match the flood data to transportation system 

data. Neither is there a methodology available specifically to determine how to best redirect 

traffic based on flood data while providing the added costs for this rerouting. 

The algorithms developed in this research identify the patterns in river gauge behavior to 

predict gauge height at 15 minute intervals, allowing plans to be made based on events occurring 

every quarter of an hour rather than quarter of a day. In addition to proving updates at a time step 

that better maps with traffic planning, the root mean square prediction error from these deep 

learning algorithms is 0.453; less than half the RMSE of current techniques based on physics 
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based models employed by the USGS, which is 1.065. This corresponds to an improved accuracy 

of more than seven inches of water level, provided on a time-scale increase of twenty-four. 

The framework also provides precise information on how traffic can be rerouted the most 

effectively to avoid high risk areas and takes into account traffic that is already in route, making 

it possible to dynamically change traffic based on changes in flood predictions. This makes it 

possible for transportation safety or disaster planners to create tools specific to their region in the 

event of a flooding event and when an event occurs, it provides a method to predict when roads 

are no longer safe for motorists. In addition to the actual rerouting of traffic, this framework 

determines the time added by modifying the route and calculates the total indirect costs incurred, 

a capability that did not exist prior to this project. 

 

 

Figure E.1 Data Integration in GIS Software 
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Chapter 1 Literature Review 

There have been numerous studies investigating flood prediction, flood inundation, traffic 

simulation, and indirect cost calculations related to flood disasters. However, there is no 

methodology in the literature that unifies these approaches. To address this gap, a review of the 

research in each of these fields is presented and used to validate a unified framework. 

1.1 Gauge Height Prediction 

Flood prediction is one of the critical research areas due to its severe impact on the 

economy and loss of lives. Several models have been developed in the last decade that take 

advantage of the historical gauge height and discharge data published by the United States 

Geological Survey (USGS). 

Several research groups have examined the prediction of the water discharge to predict 

floods in different locations (Damle & Yalcin, 2007; Elsafi, 2014; Chiari, Delhom, Santucci & 

Filippi, 2000 and Xiong, Shamseldin & O'connor, 2001). Some of these studies have used 

artificial neural networks (Elsafi, 2014; Chiari et al., 2000 and Xiong et al, 2001) and other 

traditional statistical approaches (Damle et al., 2007 and Campolo, Andreussi & Soldati, 1999). 

Three significant approaches for time series prediction are physical models, statistical models, 

and artificial intelligence models. Physical models include mathematical equations developed 

from physical information such as river profile, weather condition, basin area, etc. to forecast 

gauge height. This approach is data intensive and difficult to generalize as the model would be 

specific to the region selected. Statistical models such as autoregressive models (AR), moving 

average models (MA), autoregressive moving average models (ARMA), autoregressive 

integrated moving average models (ARIMA), and seasonal autoregressive integrated moving 

average models (SARIMA) can be used to forecast data. As the data size and complexity 
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increases, artificial intelligence techniques such as Multi-Layer Perceptron, Recurrent Neural 

Networks, and Long Short-Term Memory (LSTM) Networks have performed better. Because of 

the complexity and size of the data, an artificial intelligence approach was chosen. 

A few papers used Groundwater, precipitation, temperature, wind speed, and tides for 

calculating water discharge to predict floods (Tsakiri, Marsellos, & Kapetanakis, 2018). In a 

given region, precipitation, flow, and geographic characteristics are maintained by different 

organizations resulting in a non-uniform time frame for these parameters and also lack of 

availability in some places. One approach to avoid dependence on this variation of features is to 

choose an algorithm which can extract relevant features on its own based on the data, so deep 

learning time series prediction technique is the ideal choice.  

1.2 Flood Inundation 

Flooding is a global phenomenon that is responsible for numerous deaths, injuries, and 

extensive loss of property. The magnitude of the problem has warranted scholastic attention. 

Concerted research efforts have pervaded the literature since 1970 and the results have improved 

flood inundation capabilities (Teng et al., 2017). A majority of flood inundation studies fall into 

three categories: empirical models, hydrodynamic models, or simplified models.  

Empirical models consist of synthesizing flood related data observations to create a 

limited representation of reality. Traditional approaches such as streamflow gauging are waning 

due to the resources required. Conversely, the use of remote sensing technologies are growing. 

Several satellites have been launched in recent years that possess improved capabilities related to 

sensing and processing (Teng et al., 2017). Complementing this improvement in data gathering 

are the advances of computational approaches such as algorithms and data mining. One such 

example is the use of a maximum entropy model for spatial extent of flood inundation over a 
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study area in Sheikh et al. (2019). Empirical modelling was used to develop an equation for peak 

discharge using total precipitation, standard deviation of precipitation, and duration of storm in 

Aristeidis and Tsanis (2010). 

Hydrodynamic models use computation to replicate fluid motion. The three dominant 

approaches are 1D, 2D, and 3D models pertaining to their dimensionality. One-dimension 

modelling provides the simplest representation by treating the flow along the centerline as one-

dimensional (Brunner, 2016). Two-dimensional modelling represent mass and momentum 

conservation in a plane and operates under the assumption that the depth is shallow in 

comparison (Roberts et al., 2015). A flood inundation simulation is conducted and compared 

using both one-dimension and two-dimensional approaches in Bates and Roo (2000). Three-

dimensional modelling addresses the vertical dimension of a flooding scenario and is particularly 

useful in capturing flood dynamics during catastrophic flood events related to dam breaks, 

tsunamis, or flash floods to name a few (Monaghan, 1994; Ye and McCorquodale, 1998). 

Integration of a 3D mesh with surrounding topography for flood inundation is presented in 

Merwade et al. (2008). Generally, 2-D models are the most commonly used due to data quality 

and availability for model building and validation (Alcrudo, 2004). 

Simplified methods are based on simplified hydraulic concepts and do not involve the 

simulation of physical processes of inundation. One example of this approach is the planar 

method, often referred to as the “bathtub method”. This approach involves intersecting a series of 

planes with a digital elevation model to link the water stage/volume of the flooded area. Readers 

are directed to the review completed by Teng et al. for further elaboration on the approaches 

presented. 
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United States Army Corps of Engineers’ Hydrologic Engineering Center's (CEIWR-

HEC) River Analysis System (HEC-RAS) software tool has also been explored by researchers to 

conduct hydraulic analysis and flow simulations for a selected test area (HEC-RAS). This 

software tool can also be used to execute various hydraulic study tasks like one-dimensional 

steady flow, one and two-dimensional unsteady flow calculations, sediment transport/mobile bed 

computations, and water temperature/water quality modeling for different water channels.  

1.3 Traffic Simulation 

Traffic analysis is required for evaluating the effect of road closures and corresponding 

indirect cost estimation. Linear Optimization is one of the simplest techniques used for traffic 

analysis (Gartner, Little, & Gabbay, 1975). The problem space for this scenario is a graph. The 

objective for the problem is minimizing the travel time for all the passengers and the constraints 

are the traffic limits on the edges (roads).  

Simulation is another approach that is increasingly being used for traffic analysis. 

Simulation involves generating traffic that includes types of vehicles, start times, corresponding 

origins and destinations. Based on which, the shortest path is assigned for the vehicles using 

Dijkstra algorithm (Dijkstra, 1959). Dynamic Traffic Assignment is the most commonly used 

methodology for traffic simulations (Astarita, Er-Rafia, Florian, Mahut, & Velan, 2001). It is an 

agent based model where all the cars in the networks are agents. The objective is to evaluate an 

equilibrium solution where no traveler can reduce the travel time by switching paths. Most 

transportation related articles focused on traffic optimization, urban planning, and individual 

vehicle behavior is not given much importance.  

The granularity of the simulation can be selected to suit the corresponding problem. A 

macroscopic simulation focuses on traffic flow that can be useful for high level traffic analysis. 
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A microscopic simulation is more detailed and can capture traffic signal changes and vehicle 

positions every second. This simulation is more computationally intensive than the macroscopic 

model due to the calculations required for evaluating individual vehicle dynamics every second. 

For evaluating congestions and indirect costs associated with rerouting, assessing the delays for 

individual cars can be crucial. 

Multi-Agent Transport Simulation Toolkit (MATSim) and Simulation of Urban Mobility 

(SUMO) are some of the most popular open source traffic simulation applications. Looking at 

the overall integration capability of the project, SUMO can be ideal for the project as it is coded 

in Python and can interface with other Python libraries and files.  

1.4 Economic Impact 

Research efforts have been made to find the economic losses associated with natural 

hazards such as floods. Various researchers have utilized their resources to study different costs 

involved when a minor or major flood impacts a certain region. High-resolution remote sensing 

data was used by Gerl, Bochow, and Kreibich (2014) to develop detailed spatial information on 

different types of residential buildings. The information obtained was then used to model flood 

losses and improve existing risk analysis techniques. The use of remote sensing datasets by the 

team of researchers also compensated for the lack of availability of detailed map datasets for 

certain sections of the test area, thereby aiding in the development of comprehensive models. 

Jonkman et al. (2008) also relied on a hydrologic dataset to develop an integrated hydronomic-

economic model to thoroughly study the damages and economic losses caused by floods in the 

Netherlands. The insights from the proposed damage functions were also used to improve the 

existing risk assessment and safety protocols in the respective study areas. 
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Floods adversely affect the road network in the flood-stricken areas which paralyzes the 

flow of goods and services along the network resulting in huge monetary losses for the entities in 

charge of freight transportation. Hundreds of thousands of vehicles ply on our roads every day 

and delay of even a few hours might result in extra costs borne by the drivers. Therefore, it is 

important to dedicate resources to understanding the economic costs of various disruptions to the 

traffic. Janic (2007) proposed a model to find the direct and indirect economic costs generated 

due to disruptions in the flow of freight on an intermodal road transport network. European 

Union data was used to find the total cost of the selected intermodal road freight transport 

network. Tatano and Tsuchiya (2007) have developed a spatial computable general equilibrium 

(SCGE) model to gauge the economic losses related to disruption of a transportation network. 

Forecasting models were developed by Chu (2016) to analyze the relationship between extreme 

weather conditions and freight movement along road, rail, air, and water corridors. The impact of 

several weather factors on road traffic flow was also explored by Keay and Simmonds (2005). 

As per their investigation, traffic volume decreases by 1.35% and 2.11% during rainy days in 

winter and spring respectively which results in expensive delays for commuters. Suarez et al. 

(2005) reproduced the flooding scenarios in the urban infrastructure of Boston Metropolitan area 

to probe the impact of resulting delays and lost trips. A computable general equilibrium (CGE) 

model was also proposed by Tirasirichai and Enke (2007) to inspect the indirect economic losses 

suffered due to the closure of damaged bridges post-natural disaster.  

Floods are known to trigger huge monetary losses that have a negative impact on the 

economy of the affected regions. Lada (2018) reports that during the Great Flood of 1993, high 

water levels in both the Mississippi and Missouri rivers forced the closure of respective 

waterways that resulted in a loss of $2 million per day for the shipping industry. Since many 
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regions remained flooded for several weeks, the indirect economic losses also skyrocketed, 

adversely affecting the lives of the people suffering from this catastrophic event. Also according 

to Lada (2018), dangerously high-water levels damaged several bridges and as a result, people 

had to travel nearly 100 extra miles to reach the other side of the swollen Mississippi River. 

Since natural disasters like floods generally damage and destroy different infrastructure elements 

and subsequently lead to huge economic losses, it is important to develop a methodology which 

can help us in determining associated direct and indirect economic losses. An ability to generate 

accurate cost estimates will be beneficial to the authorities responsible for performing respective 

disaster management tasks.  

Flood-damaged road sections not only affect the daily lives of commuters, it also plays 

havoc with bottom line of various freight operators who use those roads to transport precious 

cargo across the country. A damaged road section can also slow down various rescue and relief 

operations undertaken by the concerned personnel in the wake of a flooding event that might 

prove detrimental to the safety of the people affected by the flood. Thus, it becomes very 

important to have a cost calculating methodology at one’s disposal that can also be used by the 

authorities to develop efficient routing protocols. This report presents a methodology that can be 

used to calculate indirect costs incurred by various drivers when they are forced to take detours 

to reach their destination points.  

1.5 Summary 

The gauge height predictions developed by the Advanced Hydrologic Prediction Service 

(AHPS), managed by the National Weather Service (NWS), are provided on the USGS website 

(https://waterdata.usgs.gov). The results are based on a physical model which is developed from 

digital elevation maps, weather, and other geophysical properties of the given region. The 

https://waterdata.usgs.gov/
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problem with these predictions are that they are 6 hours apart and do not provide sufficiently 

accurate results to conduct flood inundation mapping and subsequent traffic simulation. Further, 

physical models cannot be generalized and have to be developed from scratch for each new 

region. Therefore, there is an opportunity to develop a model with improved prediction time 

frame, accuracy, and generalizability. A Long Short-Term Memory Network is an ideal solution 

for the problem.  

Calculating indirect cost is not a straightforward process. Since most of the privately-held 

data is not easily available to the general public, the calculation process can become a 

cumbersome activity. However, the implications of ignoring the post-disaster indirect costs can 

be a lot more damaging than expected. Research (National Research Council, 1999) has shown 

that the percentage of indirect losses increases in large natural hazards and may constitute a large 

portion of the economic losses suffered by a region. Even though there are several models and 

tools available to calculate direct costs, there is a dearth of options when it comes to determining 

the indirect costs. Therefore, it is crucial to develop different tools and methodologies which can 

prove useful in determining the indispensable indirect costs.   

A breadth of studies have been conducted in each of the reviewed fields, but no unified 

framework has been presented. Therefore, the following methodology is presented to address this 

gap. The next section presents the model framework and gives a detailed description for each of 

the sub model processes.  
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Chapter 2 Methodology 

The primary purpose of this study is to provide emergency planners with the ability to 

preemptively reroute traffic in the event that a flood event will compromise certain road 

segments. The following methodology mirrors the sequential relationship between the sub 

models as presented in the literature review section and is illustrated by figure 2.1. Step one uses 

time series river stage data and predicts future stage values using a computational intelligence 

model (an artificial neural network). Step two uses the stage prediction value from step one as a 

model input for flood inundation profiles generated by USGS’ Flood Inundation Mapper and 

processes them to acquire a list of affected road segments. Step 3 uses the set of affected road 

segments and conducts a traffic simulation using SUMO. Step 4 conducts an indirect cost 

analysis of the traffic simulation between normal conditions and the altered conditions after the 

road network has been affected by the flooding event. The remainder of this section discusses 

each of the steps in greater detail. 

 

 

Figure 2.1 Model Framework 
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2.1 Gauge Height Prediction  

Gauge Height prediction is a Time Series prediction problem as the future values can be 

estimated from the historical data consisting of temporal information. The objective of time 

series prediction is to forecast the value of a given parameter at a future time (t+h) using 

available observation at time t. Some of the characteristics of time series models are time 

interval, recursion, and number of variables. The time interval is the difference in time between 

any two given consecutive observations. If the difference is uniform across all the data, then it is 

a uniform time series and when the difference is not the same throughout, then it is a non-

uniform time series. A recursive prediction strategy is used when more than one value is being 

forecasted into the future. Recursion means the process of prediction is repeated until the desired 

number of forecasts is reached. It is important to note that the further into the future predictions 

are made, the less accurate the results are. Another characteristic for a time series prediction 

model is the number of variables. If only one variable is being forecasted by the algorithm, then 

it’s a univariate model and if more than one variables are being predicted, it is a multivariate 

model.  

 

 

Figure 2.2 Time Series Prediction Methodology 

 

There are 5 major steps for time series prediction (fig. 2.2): data collection, pre-

processing, training, testing, and making predictions. Data Collection involves collecting data 

from the sources (data repositories, websites or API’s). Once all the relevant data are acquired, 
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the data are transformed and modified to work with the algorithm being used. This process is 

called pre-processing and includes changing the format of the file (xlsx, csv, xml, etc.), removing 

unwanted values of the data, removing errors and handling missing data. In most cases, the 

missing data are obtained by interpolation. As mentioned above, the idea behind time series 

prediction is to use past temporal data to forecast future values, and this is achieved in the 

training process. Often 80% of the entire data is used for training and 20% for testing. The 

algorithm used for forecasting takes in the historical data and identifies features that can aid in 

predicting future values. Validation is a key concept in training computation intelligence 

algorithms that indicates how well the algorithm is being trained. A simple way to perform 

validation, is by using 80% of the training data for training (64% of the entire data) and rest of 

20% (16% of the entire data) of the training data to validate. Once the algorithm is trained 

effectively, it needs to be tested with 20% of the data which was initially separated. Mean 

Absolute Error (MAE) and Mean Squared Error (MSE) are the metrics most commonly used to 

evaluate the performance of the algorithm. MAE is the average error of all the predictions and 

MSE is the square root of the average of squared differences between prediction and actual 

observation. 

Regression based models are popular for time series prediction as they are well 

understood. These models tend to have lower performance as non-linearity and data size 

increases. Deep learning models are capable of capturing complexity automatically and have 

become increasingly popular in complex time series forecasting problems. This reduces the need 

to perform feature engineering on the data as the algorithms can learn to extract features by 

themselves during training.  
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2.2 Flood Inundation 

The gauge height predictions are used as an input to consider a given flood inundation 

profile to determine the extent of the flood event. These flood inundation profiles are created by 

USGS’ Flood Inundation Mapper (FIM) and correspond to several monitoring sites around 

Missouri (denoted by triangles in figure 2.3). The FIM provides a web-based tool where the user 

can select a monitoring site to explore the flood inundation profiles (fig. 2.4). The slider bar 

allows the user to view flood inundation profiles for river stage values in half-foot or one-foot 

increments depending on the underlying data. USGS publishes a complementary report for each 

of the study areas that provides more information on model building, calibration, and validation 

(USGS, 2019). This also includes a description of how to create a raster data layer for each of the 

flood inundation profiles. These layers can be uploaded to geographic information system (GIS) 

software for integration with other data layers. 

 

 

Figure 2.3 Missouri Flood Inundation Mapper Sites 
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Figure 2.4 Interaction Flood Inundation Tool 

 

To determine the road network affected by the flood event the raster layer needs to be 

combined with road network data. This information is acquired from USGS’ National 

Transportation Dataset (NTD) and integrated with the flood inundation profiles created by the 

FIM. NTD consists of all road networks within the state. Because of the amount of data, it is 

computationally advantageous to select an area of interest (AOI) within the transportation 

network to minimize the time needed to conduct geoprocessing. This can be accomplished by 

using the software’s selection capability and creating a new layer out of the selected features. 

Integration of the two layers is then done using a GIS software package (ArcMap, fig. 2.5) for 

the case study location addressed in the Results section.  
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Figure 2.5 Example of Data Integration in GIS Software 

 

Visual evaluation and manual manipulation allows a user to determine which road 

segments are affected by a given flood stage. After verifying this provides accurate results, the 

process was then streamlined within the GIS software. Data from the FIM is stored in a raster 

format whereas transportation data is stored in vector format. Conversion of one of the data 

layers is required before further study can be conducted. In this study, the raster layer is 

converted into a point layer using the conversion toolbox within ArcMap (fig. 2.6). 

Geoprocessing is then done between the discrete point layer and the transportation network using 

the intersection function. Resolution is user-specified and in the example (fig. 2.7) it is set to one 

meter. The output of these steps can then be used as an input for the traffic simulation sub model. 
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Figure 2.6 Example of Point Layer and Road Network Integration 

 

 

Figure 2.7 Example of Affected Road Network Given Flood Inundation Profile 

 

2.3 Traffic Simulation 

The GIS output showing which portion of the road network is closed is then used as input 

for SUMO, a traffic simulation package. SUMO is an open source python simulation package for 

performing different steps of the traffic simulation process, including generating traffic, 

identifying shortest paths, and assigning traffic. Sumo has both a graphical user interface (fig. 
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2.8) and the ability to work with command line options. The road network can be generated in 

SUMO from shapefiles, open street map, and by creating a manual network within the software 

using a Graphical User Interface called ‘NETEDIT’ (fig. 2.9). After the analysis is complete, the 

generated route can be saved in xml format. 

 

 

Figure 2.8 SUMO Interface 
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Figure 2.9 NETEDIT Interface 

 

The simulation process begins with importing the road network into the NETEDIT 

application so it can be edited. With the roadway model the established simulation generates 

models of traffic. The traffic generated is matched to the average annual daily traffic data 

published by the Missouri Department of Transportation when possible to improve simulation 

accuracy. Traffic is generated randomly over a period of 3600 seconds. A single vehicle enters 

the simulation every second giving a total of 3600 vehicles per hour to represent the traffic. The 

origins and destinations for these vehicles are assigned at random with the generated trips 

recorded in xml format (fig. 2.10). These trips represent a single vehicle with the origination, 

destination, and departure time. A unique id is assigned to each vehicle for ease of tracking. 
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Figure 2.10 Traffic xml file 

 

The road network and traffic data are imported into the SUMO simulation as net-file and 

route –files respectively. The simulation can generate different outputs depending on the user's 

preference. Some of the preprogrammed options are ‘summary’ (provides information regarding 

the number of cars on the networks at a given time step, mean speed, mean waiting time, travel 

time, etc.), ‘sumotrace’ (provides information regarding the location and speed of different 

vehicles every second) and ‘tripinfo’ (provides information regarding the overall travel time, 

waiting time, origin and destinations for each vehicle). In this research, Sumotrace provided the 

information on the new route and Tripinfo provided the overall delay for each vehicle required 

for calculating indirect costs. 

2.4 Economic Impact  

The economic losses incurred from natural disasters like floods can be divided into two 

types of costs: Direct Costs and Indirect Costs. The economic losses from damages attributed 

directly to floods can be categorized under direct costs e.g. costs incurred from damage to 

infrastructure elements and agricultural land, loss of lives, etc. However, the indirect costs 

originate from disruptions to local businesses, transportation networks, and daily lives of people 
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in the affected regions (Tirasirichai et al., 2007 and Enke et al., 2008). Unlike direct costs, the 

calculation of indirect costs can often be a time-consuming process. Nonetheless, it is important 

to get proper estimates for these indirect costs so that efficient relief and restoration plans can be 

developed.  

Indirect costs can have a variety of sources indirectly associated with a disaster. For 

example, if a section of road is damaged due to floodwater, commuters will have to use an 

alternate route to reach their destination, resulting in extra fuel costs and/or lost wages. For 

freight operators, any required detour will increase both travel expenses and the shipping times 

of the transported goods. Thus, indirect costs have the potential to put a strain on both the supply 

chain transportation network and traveler’s economic budget.  

Indirect costs can be affected by various factors. In this study, average hourly wage and 

delay factors are used to calculate these costs incurred from taking detours when certain roads 

are damaged from floods. The relationship between these variables is captured empirically 

through the development of a mathematical model. 

While calculating the detour costs, a delay factor is used to represent the costs incurred 

on a particular type of trip undertaken by the driver. Along with variable costs, there are three 

delay factors impacting indirect costs: work trips, social trips, and other trips. ‘Work Trips’ 

involve trips which are undertaken for work-related tasks such as commuting to the workplace, 

transportation of goods, etc. Trips undertaken for recreational purposes are categorized under the 

‘Social Trips’ e.g. trip to the shopping mall, vacation trips, etc. All the remaining trips not falling 

under these two categories are designated ‘Other Trips’. Table 2.1 shows the traffic delay factor 

values that affect the indirect costs based on the type or purpose of the trip taken by a given 

driver.  
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Table 2.1 Delay Factors 

Delay Factors 

Low Time Savings (0-5 minutes) 

Work Trips 0.064 

Social Trips 0.013 

Other Trips 0.001 

Medium Time Savings (6-15 minutes) 

Work Trips 0.064 

Social Trips 0.013 

Other Trips 0.001 

High Time Savings (>15 minutes) 

Work Trips 0.064 

Social Trips 0.013 

Other Trips 0.001 

 

The values of the different delay factors for different time savings were calculated by 

researchers with the United States Army Corps of Engineers (USACE) (Lampo et al., 1993). 

These delay factors represent the value of time saved adjusted to an hourly basis and are based 
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on the percentage of hourly income of the driver. Since this value of time is an opportunity cost, 

it can also be used to calculate the money lost while undertaking a certain type of trip along an 

alternate route due to a traffic rerouting. During traffic rerouting, the driver must take an 

alternate route in order to resume the trip. This new alternate route typically increases both the 

expenses and time of the trip. As the driver does not gain the benefits provided by the preferred 

normal route, this opportunity cost represents a monetary loss incurred due to using an alternate 

route to reach the destination. These delay factor values are used to provide information 

regarding the losses in travel time and to calculate indirect costs while undertaking a specific trip 

on an alternate route. Based on the respective delay factors and average hourly wage, the indirect 

costs incurred as part of the trip can be calculated using equation (2.1). 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑  𝑛𝑛
𝑖𝑖=0 xi ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊.                                        (2.1) 

 

Where ‘n’ is the number of delayed cars obtained after running SUMO software package and xi 

are the respective delay factor values from table 2.1. An average hourly wage of $20 is 

considered for these calculation purposes.  

These indirect costs represent the total losses for each type of trip. They can also be used 

by the drivers to perform the cost-benefit analysis and plan accordingly in case of road 

congestion due to floods. If the information related to closed roads is available before the trip is 

undertaken, the driver can also use this information to choose the most economical and safe 

alternate route. 
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Chapter 3 Results and Discussion 

To demonstrate the effectiveness of the methodology presented, a case study is presented 

for a major transportation sector near St. Louis, Missouri that has recently experienced multiple 

flooding events. The specific area of study is Valley Park, Missouri, situated at the intersection 

of Interstate 44 and State Route 141. 

3.1 Study Area 

The area around the intersection between Route 141 and Interstate I-44 at Valley Park, St. 

Louis County, MO (fig. 3.1) was selected for the study area as the roads in and around this 

intersection experience heavy morning and evening traffic flow and have been impacted by flood 

events in the last few years. Interstate I-44, which runs between the city of St. Louis and 

Oklahoma City, has an average annual daily traffic volume of over 20,000 vehicles per day 

(Traffic Volume Maps: Missouri Department of Transportation) and is also widely used by 

freight truck operators to transport goods along this major highway.  

 

 

Figure 3.1 Intersection of I-44 and 141 during normal conditions in 2017 (Photos: Before & 

After Meramec River Flooding) 
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However, the nearby Meramec River has posed serious risks to the surrounding area 

during both minor and major flood events. During the floods of 2017, acres of private and public 

property along the I-44 and 141 intersection were damaged when the floodwaters overflowed the 

banks of the Meramec River (fig. 3.2). 

 

 

Figure 3.2 Intersection of I-44 and 141 during Meramec River floods in 2017 (Photos: Before & 

After Meramec River Flooding) 

 

As a result of sudden and frequent flooding in this area, St. Louis County has spent more than 

$200 million in repairing damaged roads over the last few years (Meramec Flooding Proposal). 

This busy road intersection has also suffered from various flooding events in 2019, making it a 

suitable candidate to test the presented methodology. 

3.2 Gauge Height Prediction 

The historical gauge height data was obtained from Water data published by the United 

States Geological Survey (https://waterdata.usgs.gov/). The location of the corresponding gauge 

(station number – 07019130) is shown by the green square in figure 3.3. 

 

https://waterdata.usgs.gov/
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Figure 3.3 Gauge Location  

 

The available data structures vary for different sites as they are operated in cooperation 

with different organizations. The Valley Park site is operated by the U.S Army Corps of 

Engineers – St. Louis District. The 15 minute time interval data for stage flow at the site is 

available from May 15th, 2016 5 PM onward, with September 1st, 2019 4 PM being the last data 

point used here. This gives a total of 113,994 samples that when plotted give insight to the 

number and degree of flood events at that location (fig. 3.4).  
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Figure 3.4 Historical Gauge Height data 

 

Weather forecasts are provided by Advanced Hydrologic Prediction Service (AHPS) of 

National Weather Service (NWS), which is a part of National Oceanic and Atmospheric 

Administration (NOAA). The forecasts are 6 hour apart for the chosen testing location, which is 

not sufficient for developing real time traffic management solutions. Therefore, a model capable 

of predicting gauge height for every 15 minutes based on past data is was developed. 

The algorithm performed best with 100 LSTM input layers, 1 dense layer, ‘adam’ - 

optimizer, lookback - 70, batch size - 110 as the parameters (see appendix A for details). The 

algorithm performs well fitting the data during both training and testing (fig. 3.5). 
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Figure 3.5 LSTM training and testing results. The input data is in blue, training results in orange, 
and testing results in green. 

 

After the algorithm was trained and tested, it was used to make predictions from 

September 1st, 2019 6 PM until September 3rd, 2019, 6 AM at 15 minute intervals. These results 

were compared to the predictions from USGS website by the AHPS of the NWS and the actual 

data during this period (fig. 3.6). The root mean square error for USGS data was 1.065 and 

LSTM was 0.453. The error in the LSTM results was lower than the USGS predictions, even 

though the LSTM made 24 predictions in six hours compared to the USGS prediction once every 

6 hours. The results of this algorithm are used as model inputs for the flood inundation sub 

model. 
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Figure 3.6 LSTM prediction results and comparison 

 

3.3 Flood Inundation 

Valley Park possesses 43 flood inundation profiles between 11ft and 54ft using the FIM 

tool. The historic crest for this location is 44.11ft recorded on 12/31/2015 and that profile will be 

used to prove the efficacy of the model framework presented (NWS, 2019). Figure 3.7 represents 

the flood inundation profile for a stage value of 45ft. Note that 45ft was chosen instead of 44ft to 

account for the historic crest value and to adhere to the one-foot increment limitation of the FIM 

at this monitoring site. Figure 3.8 represents the closed road segments as determined from 

geoprocessing and data layer integration. This set of closed road segments is used as a model 

input for the traffic simulation in SUMO. 
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Figure 3.7 Flood Inundation Profile for 45ft Stage Value for Valley Park, Missouri 

 

 

Figure 3.8 Closed Road Segments for Flood Inundation Profile of 45ft for Valley Park, Missouri 



38 

 

3.4 Traffic Simulation and Economic Impact 

Based on the flood inundation profile and affected road segments, the relevant roads were 

removed from the network manually. Figure 3.9 compares the original road network (left) and 

the flooded road network (right). 

 

 

Figure 3.9 Original road network (left), flooded road network (right) 

 

For the traffic simulation, vehicles were generated with random assignment of origins 

and destinations for a period of 3600 seconds. Two simulations were performed, once on the 

original network and then on the flooded network. The number of cars running on networks at 

every second are plotted in figure 3.10. 
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Figure 3.10 Comparison of number of cars on the networks 

 

The overall travel time for each vehicle was evaluated both on the normal and flooded 

road networks to determine the corresponding delay time. To evaluate indirect costs the purpose 

of travel for the vehicles was assumed to be 40% for work, 40% for social activities, and 20% for 

others. Using an average hourly income of $20 per hour, the final indirect costs associated with 

rerouting was calculated. 

For this scenario, the total indirect costs associated with delays were $5519/hour. The 

usual traffic disruption would last for many hours and in some cases several days. Therefore, this 

cost can quickly add up to a significant value during flooding events.  
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Chapter 4 Conclusions 

The results reported here demonstrate a proof of concept for the integration of geospatial 

data, river gauge data, and traffic data to improve flood prediction and traffic routing 

information. The framework presented here provides updated information on the status of 

floodwaters and how they are affecting roads at 15 minute intervals. More importantly, it 

predicts future river gauge heights more accurately than current models, making it possible for 

decision makers to evaluate the future state of the road network and plan timely road closures 

accordingly.  

The framework also provides precise information on how traffic can be rerouted most 

effectively to avoid high risk areas. Integrating the inundation mapping with the road networks 

provides information on roads that are likely overtopped at 15 minute intervals rather than six 

hour intervals if the NOAA data were used, giving motorists more advanced warning. The 

framework also takes into account traffic that is already in route, making it possible to 

dynamically change traffic based on changes in flood predictions. The traffic analysis also allows 

the planner to consider indirect losses associated with the road closures to better evaluate the 

overall economic impact of the flood event. The water level increments of one foot give a better 

indication of the road conditions than if only Digital Elevation Models were used, which is 

current practice. This makes it possible for transportation safety or disaster planners to create 

tools specific to their region in the event of a flooding event and when an event occurs, it 

provides a method to predict when roads are no longer safe for motorists to travel on. 
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Chapter 5 Limitations and Future Work 

The results reported here demonstrate a proof of concept for the proposed methodology 

and there are some limitations. The FIM provides useful flood inundation profiles but only for 

discrete locations near St. Louis and Kansas City, Missouri. Further, profiles are only given in six 

inch to one foot increments and require that the next integer value be chosen to avoid 

underrepresentation. This shortcoming results in roads being closed that are unaffected by an 

actual flood event. Therefore, the methodology presented here is limited to those locations and 

incremental stage values. In addition, some areas within the FIM are labeled as areas of 

uncertainty. This designation can be due to several modelling limitations, but in this case they are 

attributed to a levee surrounding the Valley Park Industrial area. In the event that the river stage 

value reaches 44ft, the levee at Valley Park would be overtopped. The profile within the area is 

uncertain and therefore not represented in the profile generated.  

The gauges are operated by different organizations and this results in varying data 

availability. This is a limitation on the generalizability of the model. The gauge in Valley Park, 

MO for the Meramec River is operated by the U.S. Army Corps of Engineers, St. Louis - District. 

They started collecting the gauge height for every 15 minutes starting May 19, 2016, this provided 

a significant amount of data to train the algorithm. However, many sites are still collecting data 

every hour. The time frame for gauge height prediction algorithm would be different in certain 

locations depending on the availability of data. 

There is an uncertainty associated with every model and evaluating that uncertainty helps 

to define the limitations of the model. A methodology for evaluating the certainty measure 

associated with the prediction of a road being flooded can be developed in the future. The traffic 

data (origin, destination, etc.) used for simulations are randomly generated and may not be an exact 
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match to current traffic patterns. Because of this, the actual delay times and indirect cost can vary 

significantly from the estimated values. The simulation was run for a period of 60 minutes or 3600 

seconds using the SUMO library. Using longer run times and/or a larger road network in the 

simulation may provide a more robust model. Additionally, the traffic generated over a period of 

3600 seconds does not match exactly with the traffic data collected by the Missouri Department 

of Transportation (MoDOT). Future work will involve making these changes in order to represent 

the interactions between the variables in a more efficient way.  

A Supply Chain Infrastructure Restoration Calculator (SCIRC) software tool developed 

by researchers at Missouri S&T, Rolla and United States Geological Survey (USGS), Rolla can 

also be used to calculate direct costs and other resources needed to restore damaged road 

network post-flood events. Better protocols can then be developed once the estimates of material, 

costs, and number of restoration crews are made available to the responsible personnel using the 

software tool. Other tools developed by the US Army Corps of Engineers (USACE) such as 

Hydrologic Engineering Center Flood Impact Analysis (HEC-FIA) (FIA 2.2 Features) and 

Hydrologic Engineering Center Flood Damage Reduction Analysis (HEC-FDA) (FDA) can also 

provide information related to losses to agriculture, structures, and lives etc. from floods along 

with the additional economic parameters like expected annual damage and equivalent annual 

damages.  

Currently, all of the models exist as independent solutions and manual input required to 

connect them. A single integrated flood and indirect cost estimation tool can be developed in the 

future by automating and integrating these models into a single cohesive application.  
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Appendix A 

LSTM Networks: 

 

Figure A.1 An Artificial Neuron (Gupta, 2017) 

 

A neural network is an artificial intelligence technique based on the functioning of the 

human brain. The Basic unit of a neural network is an ‘Artificial Neuron’ (fig. A.1). The Neuron 

takes the input variables (x1, x2….xn), multiplies them with corresponding weights (w1, 

w2….wn), and applies an activation function (f) to generate the output. A bias (b) can also be 

added as part of the function. The bias and the weights are the parameters that the neuron 

changes during the training step. 

A neural network consists of a large number of such neurons (fig. A.2). The algorithm 

uses the current weights to predict an outcome and then adjusts the weights so that it can 

generate the corresponding output. Thus, a neural network represents a function that maps the 

input variables to the outputs. 
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Figure A.2 Neuron Network (Vikas, 2017) 

 

One shortcoming of traditional neural networks is that they cannot retain temporal 

information. To account for this shortcoming recurrent neural networks (RNN) were introduced. 

This network consists of loops which help in retaining information from previous time steps as 

shown in figure A.3. The information from the first time step (0) is passed to the next time step 

(1) and so on. This structure can make this algorithm effective for time series forecasting. 

 

 

Figure A.3 Recurrent Neural Network (Suvro, 2018) 
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One issue with recurrent neural networks is that as the number of time steps increases the 

RNN cannot connect the information. For example, the information passed at time step (0) has 

little to no effect at time step (20). To address this inability to consider information many time 

steps prior the Long Short-Term Memory (LSTM) architecture was introduced. This is a type of 

recurrent neural networks as it still has a recurring chain-like structure, but uses a repeating 

module known as a ‘LSTM cell’ (fig. A.4). 

LSTM cells can remove or add information regulated by the gates. It uses vector addition 

and multiplication to change the data. A sigmoid (σ) layer outputs either 1 or 0, which means it 

would ‘let nothing go through’ or ‘let everything go through’. These gates ensure that the 

relevant information is being retained in the network over time.  

 

 

Figure A.4 LSTM cell (Christopher, 2015) 
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Figure A.5 LSTM architecture 

 

A sequential model was used to develop the algorithm as it helps to stack up different layers 

required to build the LSTM linearly (fig. A.5). The ‘Dropout’ layer is placed after input layer, 

limiting the number of input neurons evaluated to reduce overfitting the training data. It can also 

be used to evaluate uncertainty in the predictions of LSTM. Dropout results in the algorithm 

learning more features and might take more iterations to converge. The final dense layer performs 

a linear operation to output a single forecast. 
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